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Preface

This thesis is an initial attempt to use reliability

growth models to predict dormant reliability. It can actu-

ally be thought of as a two-part thesis. The first part

pertains to reliability growth, and the second part to dor-

mancy and the Monte Carlo experiments.

The purpose of this study is to provide evidence

that it is possible to predict dormant reliability with

reliability growth models. My hope is that the initisi work

done in this thesis can someday be expanded to provide a

sound methodol.ogy for analyzing dormant reliability.

The original idea of using reliability growth models

to predict dormant reliability was conceived by my Thesis

Advisor, Professor Albert H. Moore. I an sincerely indebted

to him for his inspiration and help in completing this study.

Also, I would like to thank the Reader of my thesis, Lt.

Col. Edward J. Duinne, whose constructive criticism was an

Important part of the final report. Finally, I would like

to express great thanks to my wife. Jackie, whose hours at

the typewriter played ani essential role in the, completion of

this project.

John F. VonLoh
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Abstract

This thesis presents the results of an extensive

literature search into reliability growth and the subsequent

use of three reliability growth m4dels to predict dormant

reliability. A brief review of reliability theory is

followed by a survey of reliability growth models, which

includes the detailed developments of and specific examples

for five popular models. The natura of dormant reliability

is then discussed as a prelude to a Monte Carlo analysis

using the Duane, Gompertz, and Bonis reliability growth

models to predict doirmant reliability.

ix



RELIABILITY GROWTH AND ITS APPLICATIONS

TO DORMANT RELIABILITY

I. Introduction

Reliability of dormant weapon systems has been a

concern throughout military history (Ref 32:7). Many

strategic weapon systems in the Air Force today, for example,

lie in a dormant state for years, but are expected to per-

form reliably when needed. Many of these systems are vitally

important to our national security. In addition, there is

always a cost associated with the replacement or repair of

systems when they fall below acceptable reliability levels.

Since reliability has a direct impact on the mission perform-

ance and operating cost of a system, it follows that there

Sa need to assess the impact of dormancy on a weapon

system.

One of the problems with dormancy is the lack of

consistent or well-defined methods for determining its

effects (Ref 32:11). This fact is reinforced by remarks in

the Introduction of a report by J. Bauer, D.F. Cottrell,

T.R. Cagnier, and E.W. Kimball, of the Martin-Marietta

Corporation. They stated:

... Documents such as RADC Reliability Notebook and
MIL-HDBK-217A depict in detail operational failure
rate data, derating factors, environmental factors,
quality factors, etc. Little or nothing is extant

1



on the other states of activation--storage, dormancy,

'rnd power on-off cycling [Ref 8:1-1].

The-e statenents arc evidence that there is knowledge to be

gained by additional research into dormant reliability.

A general definition of dormant reliability is the

chaa(;c in reliability of a s/stem over time as it lies in a

dormant or unused state (Ref 32:22). There is no single or

consistent definition of exactly what constitutes a dormant

state. However, most cf the literature will refer to a

dormant state as a state of very little or no operational

stress (Ref 24:43). For example, a missile system to which

enough power is added to see if the components are function-

ing properly, say once a month, could be considered a dor-

mant system. Of course, the effect of dormancy on a system

will vary with the system and the environment in which it is

stored. In most cz"ses, however, the effect of dormancy is

an increase in the failure rate of the system with the pas-

sage of time.

On the other hand, a general definition of reliability

growth is a continuing decrease in a system's actual failure

rate that will approach an inherent value of the system

(Ref 31:330-331). The inherent value of the system refers

to the maximum reliability one can-expect from a system based

on the design characteristics. A good example of reliability

growth would be getting the "bugs" out of a new car. Onc2

the early problem areas are fixed, the car will perform with

a higher level of reliability for most of its life.

2
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Compared with reliability growth, dormant reliability

has an opposite or negative effect. With reliability growth

the failure rate will be decreasing, while with dormant reli-

ability the failure rate will be increasing. Intuitively

then, it seems that the methodology used to determine reli-

ability growth could be applied to dormant reliability.

In general, the nature of reliability growth modeling

is to first test a system, then analyze the results of th'

tests, and finally fix the system (Ref 14:3S). The pror-,ure

is repeated until enough data are obtained te construct a

reliability growth curve. From the reliability growth curve,

estimations of future reliability of the system can be made.

Analogous to this situation is a dormant system which is

stored and tested at regular intervals. In both the.dormant

case and the case where reliability growth is present, the

objective is to determine the change in the failure rate oi

the system. This analogy should make it possible to use

reliability growth models to estimate dormant reliability.

Since the theme of this study hinges on an in-depth

understanding of reliability growth, the first objective

will be to present a survey of applicable reliability growth

models. Included in the survey will be a detailed discus-

sion of five reliability growth models which represent the

most widely used models that are capable of predicting

future reliability. In addition, there will be a general

discussion of other reliability growth models that were

found in the literature search.

3



In light of the analogy between reliability growth

and dormant reliability (each has changing failure rates),

research to determine whether reliability growth models can

be used to estimate dormant reliabillty would be important.

This is because much work has already been done in reliabil-

ity growth. This reasoning supports the second obJective of

this study, that is to determine with relative "goodness-of-

fit" measures how well a set of selected reliability growth

models fit dormant data generated by Monte Carlo simulation.

Simulation was used so the underlying failure dist~ibutions

would be known and could be used to calculate the true

system reliability. The true system reliability was used as

the basis for comparison in the relative "goodness-of-fit"

measures.

To achieve the study objectives, an intensive litera-

ture search vas made into reliability growth and dormant

reliability. The results of this literature search are pro-

sented in the following sections: Section 1I sumnarizes

some of the key relationships associated with reliability

theory which are used throughout the study; Section III

discusses reliability growth models; Section IV is a general

discussion of the nature of dormant reliabilit); Section V

outlines the Monte Carlo simulation; Section VI presents the

results of the Monte Carlo exanerinents; and finally. Section

VII contains conclusions to the study and recomeandations for

further research. In addition, the Appendix contains addi-

tional significzat data resulting from the Monte Carlo simulations

4



II. Reliability Review

This section is a short review of some of the reli-

ability concepts that will be referred to in this study.

It is intended to refamiliarize the reader w-th the import-

ant probabilistic relationships used in reliability theory.

In addition, emphasis will be placed on general notation

that is used in this report.

The Reliability Function

The probability of a system failure, as a function

of time (t) is defined as

PT_..t) - IFt)M tO (2.1)

where T is a random variable denoting tins to failure. F(t)

is the cumulative density fu-nction (cdf) of the failure

times, or the protability that the system will fail by

time t.

The reliability of the system at time t is defined

3(t) a 1-1(t) a P(T3t) (2.2)

where R(t) is the reliability function. If the random

variable T has a probability density function (Cp) equal

,to f(t), then

R(t) - 1-F(t) - I- Lotf(x)dx - (x)d (2.3)
0

II
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where x is used as the variable of failure tine Wefore into-

gration takes place. Eq (2.3) is the fundamental relation-

ship between the pd4 - f(t), the c4f - F(t), and the

reliability function - R(t) (Ref 30:9-10).

In this study, the reliability will usually be de-

noted by the letter R. For a.aaple, the reliability as a

function of time would be R(t), and the reliability at a

specific time, say t a 15, would be R(15). This notation is

consistent with most textbooks and articles on the subject.

The Vxpected Life

The expected life of a system is the time during

which it is expected to perform successfully (Ref 30:10).

If the random variable T is used to denote time to failure,

"then by definition

I) M (tf(t)dt (2.4)

where E(T) is the expected value of the random variable T

(Ref 38:121). Another convenient expression for the expected

life is

(T) *ra(t) dt (2.5)

This expression is derived as follows. •Let u - R(t) and

dv- dt. Then

du a d[R(t)] a d[l-F(t)].- d[-F(t)J - -f(t)dt

and v- t. Using integration by parts, . *

6
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JIýR(t)dt - udv

" uv " f"vdu

- [tRt)I *" t f(t)dt (2.6)

it is clear that when t-0, the first term of (2.6) is also

zero. In addition, it is assumed that R(t) - 0 at t - + U

-J (reliability is a decreasing function of time) and the first

term is again zero. This leaves only the second term

ttf(t)dt E E(T) (2.7)

from Eq (2.4).

Terus associated with E(T) are the mean time to fail-

ure (MTTF) or mean time between failure (VTIF). However,

these terms should be used only when the failure distribu-

tion function is specified. The reason for this is because

the reliability at the MTBF or )ITTF is not generally the

same for any two given distributions. For example, the

iQOTBF) for normal density function is P(z0) - .S. However..

R(WIY3F) for the negative exponential model is EXP(-l) - .368

(Ref 30:11). . -.

"Relationshi, to the Hazard.

The hazard function, h(t), is defined as the instan-

taneous failure rate of a system at time t. More formally,it is the conditional probability that a system fails in the

small interval (t,t.At), given it has survived until time t.

The relationship between h(t), f(t), F(t), and R(t) is as

1 / -



follows

h(t) t (2.8)

The derivation of this relationship can be found in Ref 30:

11-15 or Ref 31:13S-137.

A special case, when the hazard function is constant

throughout time, is the case of '.he neg exponential distri-

bution having the form (Ref 30:2S4)

R(t) - EXP(-Xt), t > 0 (2.9)

where

R(t) the reliability at time.t

I the instantaneous failure rate

The parameter of the model, usually denoted by ., is the

hazard rate for all t (Ref 30:234). This has led engineers

to refer to the failure rate as X or 1(t) in many cases.

However, care must be taken to assure that the failure rate

referred to is actually the instantaneous failure rate and

not s cumulative failure rate or failur4 rate over a speci-

fi.ed interval. It must be esphaý^zed that the relationship

in Eq (2.8) only applies when the instantaneous failure

rate is used. In this study, the instantaneous failure rate

will be denoted by h(t) when the relationship in Eq (2.8)

is expected to hold.

-- • _. --- -- -v-- .



III. Reliability ýrowth

The failure rate of a ;ystem in its early life or

development stage is often characterized by change (Ref 30:

3). Many factors can cause this change. For example, an

equipment may have a faulty component that is redesigned or

replaced with a better component which will cause the equip-

went to be more reliable after the change. Another example

would be the increase in reliability of a weapon system,

like a new aii%.raft, that would occur after the operators

became more familiar with how it worked. This phenomenon

is called "reliability growth."

As the name implies, the general notion is that the

zeliability will "grow" to some inherent value (Ref 31:330-

331). The inherent value could either be a reliability tar-

get set for the system, or it could be a limiting reliability

based on the design of the system. However, an increase in

reliability need not be the only case. A change could be

made that would be detrimental to the system. The point is

that a system in its early life Is generally not character-

ized by random failures of a constant nature, but rather by

a changing failure rate that hopefully will increase with

time.

The Survey

An intensive investigation into reliability growth

9



was conducted for two reasons. The first reason was to deter-

mine if reliability growth modeling techniques had evtr been

used in the past to predict dormant reliability. Secondly,

an in-depth understanding of reliability growth was needed

for the experiments on dormant reliability iu the latter pArt

of this study.

The literature search revealed numerous reliability

growth models. Some models can be used to predict future

reliability levels, wb- .e others cannot. In addition, some

models are quite easy o use, while others require the use

of more complicated procedures. For example, the Duane model

(Ref 22) uses a simple graphical technique to estimate

future reliability, while Singpurwalla's technique (Ref 53)

requires use of the Box aud Jenkins time series analysis pro-

cedures (Ref 11), which are more complicated. For these

reasons, not every model was studied in great detail.

To give the reader a good idea of what reliability

growth involves, five models are discussed in detail in this

survey. These models are: 1) the Duane model; 2) the Crow

"model; 3) Lloyd and Lipow's hyp'..ebolic model; 4) the Gompertz

model; and S) the Bonis model for onae shot devices. These

17- models were chosen because they rare widely used by military

analysts, and because they provide a good cross-section of

reliability growth modeling techniques. Also, they were

chosen because they each provide a predictive functwoeal

relationship for the reliabil'.ty growth curves. This/

feature makes it possible to predict reliability levels of

10
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future times t. Some models, such as the Barlow and Scheuer

model (Ref 5), do zot have this capability.

There will also be a section of this chapter devoted

to other reliability growth models. Included in this section

will be a brief description of many of the other reliability

sgro'.h models. The intent is to inform the reader, in a very

general way, abcý.Xt each of these models and to provide reier-

ences which discuss each model in detail.

The Duane Model

J.T. Duane, of the General Electric Company, developec,

a reliability growth model that has been widely used in

development and testing programs (Ref 22:563-566). The model

has been used extensively by the military since its first

publication in 1962. The idea for the model came when Duane

noticed that the plot of cumulative mean times between fail-

ure (MTBF) for successive test intervals would many times

plot as a straight line on log-log paper (Ref 17:6). Duane

used the plots to determine the change in failure rates as a

function of time.

The Model. The basic assumption of the Duane model

is that a testing program is- divided iinto intervals (Ref 19:

Al-A6). Each interval could represent a design change or

engineering modification, but the failure rate for any given

interval would remain constant during that interval. This

assumption Implies that the reliability during any specific

interval can be represented by the negative exponential model,

NNW



Ri(t) - EXP[-kitl, t > 0 (3.1)

wh-re

Ri (t) a the reliability for the ith interval

\ the failure rate for ti-s ith interval

t - the time

i • 1,2,..., the total number of intervals

Mathematically, the form of the Duane model is

c (t) N(t) Kt-a, t > 0, K > 0 (3.2)

where

Sc(t) * the cumulative failure rate

N(t) - the cumulative number of failures

t * the cumulative test time

a a the growth rate constant

K - constant that represents the cumulative
failure rate at t 0 0

The instantaneous failure rate can be derived by taking

dN(t)/dt. This yields

N(t) - Ktl-a

~~.. ... ..... . dN~t)
**~.~ ~ r'- (1-s)xtG . (3.3)

where A(t) is the instantaneous failure rate. From this

equation the reliability can be calculated for a time t that
corresponds to the ith interval and, thus, I ICt) becomes A

"in Eq (3.1). .-

Parameter Estimation. Taking logarithms of Eq (3.2)

gives the mathematical representation of the straight-line

- . - -



plots on log-log paper (Ref 19:A4). The resulting equation

is
ti

Sln(NHt- ] - ln(K) - aln(t) (3.4)

From this equation, two methods of parameter estimation

emerge (Ref 4:12-14). First, least squares can be used by

taking the ln(t) and the ln[N(t)/t] as input. Second, a

graphical technique can be employed where K is estimated as

the intercept of the plot at t 1 or ln(t) - 0, and a is

estimated as the negative of the slope of the line.

Least squares may be the more exact method of the

two (Ref 4:13), but the graphical technique lets the analyst

visualize the process (Ref 1S:458-459). By getting a visual

perspective, some additional insight may be gained. For

example, least squares techniques would not point out a

specific outlier in the data; however, if the graphical tech-

nique was used, the outlying data point could be easily seen.

Example. Suppose the data listed in Table I coavain

the cumulated time (t) and cumulated failures [N(t)] of a

test program (Ref 19:AS). The cumulated time is the total

test time for the item or items on test. For example, if

three items are placed on test for one hour, the cumulated

time is three hours. In this case, three items were placed

on test, and as a failure occurred, appropriate design

changes were made to all three items. They were then put

back on test until t - 10. Using log-log graph paper, t is

plotted on the abscissa and N(t)/t on the ordinate. The

13
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TABLE I

Cumulated Test Data

t NMt NM/t)l

1.00 3 3.00

2.00 6 3.00

5.00 13 2.60

8.00 18 2.25

10.00 22 2.20

slope is then computed and used as the estimate for a. In

this case, the slope is .148 - 14.Omm/94.3mm. The estimate

for K is simply the intercept (ordinate value) at t - :1,

which is 3.18. Figure 1 shows the plot of the data as well

as the numbers used to arrive at the estimates for Q and K.

If least squares are used to estimate the parameters,

ln(t) is considered the independent variable and ln[N(t)/t]

the dependent variable (from Eq 3.4). The results of using

least squares estimators on the data in Table I are a t  .147

and K a 3.15. These agree closely with the values deter---

mined using graphical techniques.

Once values for K and a have been found, instantaneous

failure rates can be calculated using Eq (3.3). Applying

the negative exponential model, Eq (3.1), will provide esti-

mates of reliability at any specified time. However, one

must realize that future predictions are based on the rate

of growth or deterioration which was determined from the

14



- -=4=: .- ---___ --_:- • __

11 2, 3_ 4 S e ? 10 , 2

Fig 1. Plot of Data on Log-_og Paper

original data. In other words, the failure rate will change

i consistently with time.
The least squares method of estimation assumes both

independence of the failure times and also constant variance

(Relf 37:389). Since this is usually not the case with cumu-

S~lative data, confidence limits using least squares proper-

ties are not statistically valid (Ref 12:3). However, the

SCrow model, which will be discussed next, uses maximum

likelihood estimators which do enable the analyst to ca~lcu-

late confidence limits.

The Crow Model

Larry H. Crow, while working with the U.S. Army

Materiel Systews Analysis Agency (AMSAA), took the Duane

model a step further. Crow used the mathematical interpre-

tation of the straight-line plots of the cumulated failure

rate on log-log paper to shuw that system failure times were

following a nonhomogeneous Poisson process with Weibull

_ _-is



intensity (Ref 16:205-212).

The Model. The straight-line plot of cumulated

failure rates versus cumulated time on log-log paper means

ln[Ht-.[ - a + bln(t) (3.5)

which is Eq (3.4) of the Duane mowil where ln(K) - a and

-a - b (Ref 19"A2-A3), Equating N(t) with its expected

value (assuming an exacL linear relationship) and taking

exponentials gives

IENt) . eatb (.)

t

or

E[N(t)] - eatb+l (3.7)

Letting B b + 1 and a ea yields

E[NMt)] - OtB (3.3)

The instantaneous failure rate, h(t), is obtained by differ-

entiating Eq (3.8) with respect to t. This gives

h(t) = dN(t)/dt - aBtB 1  (3.)

which is recognized as the Weibull hazard function. Of

course, the assumption that failure rates remain constant

for the duration of any interval is still in force. This

implies that failures follow a nonhomogencous Poisson pro-

cess with Weibull intensity function h(t). In other uords,

for the duration of any interval i, Eq (3.1) applies. This,

is consistent with the assumption of the Duane model,

16
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however, the changing parameter, Xi, is model, with the

Weibull hazard function (Eq 3.9).

Parameter Est•mation. The main difference between

the Crow model and the Duane model lies in the method of

parameter estimation (Ref 16:207). When using least squares,

it is assumed that the data are independent with constant

variance. Crow points out that the Duane model assumes the

cumulated failure rates are consistently increasing, decreas-

ing, or remaining the same. This implies the data are not

independent (Ref 16:206). In addition, the variance of the

cumulative failure Tate is not constant, but decreases as

time increases (Ref 16:206). The result is that confitience

bounds of a and B using least squares properties are not

valid.

Rather than using least squares or linear estima-

tions from log-log paper,. Crow uses maximum likelihood (ML)

estimatcrs. The form of the ML estimators are

am N-1 (3.10)

and
N (3.11)

where

N - the total umber of failures observed

ti -time at th ith failure

tn time at the Nth failure

17J



These estimators assume a single reparable system with

failures that follow a nonhonogeneous Poisson process with

Weibull intensity. When a failure occurs, the system is

repairedand put back into service, and the repair time is

considered negligible (Ref 18:383-388).

The existence of the ML estimators m;a:e it possible

to calculate confidence intervals (Ref 16:206). In addition,

Crow suggests using the Cramer-von Mises statistic as a

test for the appropriateness of the model.

Example. Table 1I represents data from a test pro-

gram truncated after the Nth failure (Ref 19:All). The

first step is to estimate B and a using the ML estimates,

and then perform a goodness-of-fit test using the Cramer-

von Mises test statistic (Ref 19:A12). The ML estimate of

B is

3.N is .4611 (3.12)N-1 1.4(9.856)-63.456 ".61(.2

(N-I)In(tn)-Z In(tI )

The ML estimate for a is

N 15 65
N, is ,635S (3.13)

ta 949.7 4r

The Cramer-von Rises statistic is (Ref 19:AlO)

2 rJtif 21- 1 (.4

where

N - N-2, where N is the number of failures

is



TABLE I I

SFailure Data for Crow Model

Failure Failure
Number Time

1 1.S .405 .405

2 3.2 1.163 1. 569

3 11.8 2.468 4.037

4 29.6 3.388 7.424

S 53.6 3.982 11.406

6 6S.2 4.177 15.583

7 119.4 4.782 20.366

8 265.3 5.581 25.947

9 294.0 5.684 31.630

10 441.1 6.089 37.720

11 465.1 6.142 43.862

12 567.0 6.340 50.202

13 685.8 6.530 56.733

14 831.4 6.723 63.4S6

1s 949.7 6.8S6 ------

ti time of 1th failure

tn - time of the Nth failure
*HB1^, the unbiased estimate of B

C - .0193 compared with a critical value off .169, there-.

fore the model cannot be rejected. It is also possible to

use the chi-square goodness-of-fit test for this model

(Ref 13:49's.
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Since the model is appropriate, the instantaneous

failure rate for the system may be estimated by

Ah~ -A (im'3.15)
h(t) a Gft

or

h(t) .6:SS(.4611)t's 38 9  (3.16)

This equation will produce point estimates for given values

of t. In addition, confidence intervals can be computed for

a, B, and h(t) (Ref 19:A12-A13).

This model has found wide acceptance, especially by

the military and military contractors. The Army Materiel

Development and Readiness Command (DARCOM) pamphlet P702-4

has several numerical examples of applications of the Crow

model (sometimes referred to as the AMSAA model) (Ref 19).

In addition, Donald P. Amiotte did a study of how well this

model tracks data (Ref 2).

The Lloyd and Lipow

Hyperbolic Model

David K. Lloyd and Miron Lipow considered a relsia-

bility growth model based on the following assumptions (Ref

31:338-347). First, a test program is conducted in N stages,

each stage consists of a certain number of tests or trials

of the system in question, and the only data recorded is

whether the system was a success or failure. In addition,

the system has a fixed reliability during any particular

stage and the results of the testing in a stage are used to

improve the system in the subsequent stage. After the Nth

w0
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stage, a reliability growth curve is fit to the data.

The Model. The form of the growth function at the

kth stage is

R R" (3.17)

where

SRk a the reliability after the kth stage of testing

R. - the ultimate value of reliability which could

• be attained vs k approaches infinity

a parameter which modifies the growth rate

Parameter Estimation. There are two methods of

parameter estimation suggested by Lloyd and Lipow (Ref 31:

337-347). The preferred method is maximum likelihood (ML),

but the ML estimators involve two equations which must be

solved iteratively by trial and error. This process could

take a great deal of time without good initial values. This

leads to the second method of estimation, least squares.

Once the least squares estimators are found, they can be

used as initial values for the ML estimators.

Since the data are comprised of Sk successes at the

kth stage, the likelihood at the kth stage is given by

Sk k~L LkC R (l.Rk) (3.18)
where

Lk -the likelihood at the kth stage

C * a constant

Rk = Sk/Nk - reliability at the. kth stage
s the, number- of successes at the kth stage,

iik
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Nk - the number of items tested at the kth stage

Assuming each stage is independent gives the likelihood

function

N N S NSk
L ALkC' t Rk(lRk) (3.19)

kal k-I

The log-likelihood function is

NCO) n nCC') k) +sn ) (Nk"S)(lR (5.20

k-i k-I

Substituting R, , for Rk froA Eq (5.17) yields

• 14

"ln(L) " ln(C') + EZ Sln(Rw
k -i

NI (NkS-Sk)ln(I-R.÷+I) (3.21)

k-2

Taking partial derivatives with respect to each parameter

gives the likelihood equations

N 1; N N - Sk (.2L- E k-', 0 (3.22)
3Ra a

and

)l L- ~ N / N (Ni. k)/

a- ?- (3.23)

These equations can be solved by trial and error to obtain

the ML estimates for R,, and a.

As mentioned earlier, initial values for a and Re

can be determined using least squares techniques. To

22-
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determine the least squares estimators, let Q be the sim of

the squared deviations of the observed success-ratio (Sk/Nk)

from its expected value (R. - 1/k). This gives

N N~ 2
Q - k CSk/Nk - R + a/k) (3.24)

.. k- 1

Taking partial derivatives with respect to each parameter

gives the following two linear equations in two unknowns,

Ji N Sk
z NR. - aCI (3.25)
k-1 k

and

N Si
kl 1k - R.C 1  aC2  (3.26)
k-1 k

where

N
C1- N k (3.27)k-l k

C "k-lZ (- 3.28)

Solving Eqs (3.25) and (3.26) for a and R gives

N N
C2 E CS!/Nk)-CI k (Sk/kNk)

.NC - Cz (3.29)

I~N 2 - 1
and N N

C1  £ (S,,/N!)-N Z (Sk/kNk)
= k! 1 R:-1 (3.30)

NC2 - C1z

2 1
where a and R,, replace a and R, respectively.
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Example. Suppose 10 items were tested each week for

10 consecutive weeks. After each test, design changes were

made to improve the system based on the results of the test.

Table III is a summary of the data collected in this develop-

ment p.ýogram. When N (number stages) is 10, C1 = 1 - 2.93

and C2  E 7 1.SS. The least squares estimates are
k

".1.ss(7.2) - 2.93(1.s9)-.938 (3.31)

"10(l.SS) - ( 2 . 9 3 )Z

a 2.93(7.21 - 10(1.59 745 (3.32)

"10(1.SS) - (2.93) =

The resulting growth function is

Rk .938 - (.74S/k) (3.33)
'I

This equation will give the reliability for any of the N

stages by substituting in the appropriate value for k.

Of course, Eq (3.33) was found using least squares.

If the ML estimators are desired, the values calculated for

a and R, should be used as initial values in Eqs (3.22) and

(3.23). Values for a and R can be changed slightly with

each iteration until Eqs (3.22) and (3.23)-are both as close

to zero as possible. The restilting values of a and R. are

the ML estimators. With the properties associated with ML

estimates, the analyst can also find confidence limits for

the estimators and the reliabilities.

Lloyd and Lipow also briefly discuss two variations

to the growth model shown in Eq (3.17). One can be used

24
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TABLE III

Data from Test Program

k Nk S k kSk Sk/Nk Sk/kN k

1 10 3 3 .3 .300

2 10 4 8 .4 .200

3 10 7 21 .7 .230

4 10 6 24 .6 .150

5 10 7 35 .7 .140

6 10 8 48 .8 .130

7 10 8 S6 .8 .114

8 10 9 72 .9 .113

9 10 10 90 1.0 .111

10 10 10 100 1.0 .100

when data are given as time-to-failure rather than merely

the number of successes (Ref 31:347). The other uses

binomial data, but weighs the -urrent estimate of the reli-

ability on the kth trial with ie estimates of all previous

trials (Ref 31:348).

Lloyd and Lipow alsc .ioped a two-state model

(perfect or imperfect) (Ref 3. .331-338). However, this

model is restricted by the assumption that failures can

occur in only one way. In other words, only one failure

mechanism is allowed when using the model. In addition,

no consistent estimators for the parameters are provided

(Lloyd and Lipow do not provide any, and Sherman, who

S2S



conducted a study on ML estimators for reliability growth

models, confirmed this shortcoming) (Ref 9:20).

The Gompertz (Virene) Model

E.P. Virene, of the Boeing Company, used the Gompertz

equation as a general reliability growth model in 1968 (Ref

56:265-270). The model fits a reliability growth curve

through cumulated percentage points of reliability plotted

against time. The model has been used to determine reliabil-

ity growth in government programs such as the Lunar Orbiter

Spacecraft and the Blue Scout Launch Vehicle (Ref 56:265).

The Model. The form of the Gompertz equation is

ct

R(t) n ab , t > 0 (3.34!

where

R(t) = system reliability at time t

a * the upper limit of reliability as t
approaches infinity

b = the base parameter

c = the shape parameter

t e the test time such as cycles or average
operating time per unit equipment age

When using this equation, the parameters a and b must be

between zero and one. In addition, parameter c must be

between zero and one if reliability growth is being modeled.

There are also assumptions concerning the variable

"t (Ref 33:D-59). The values of t must be in the same units

"for each data point observed, and the intervals of t must be
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equal. It is also assumed that the set of data points used

to estimate the parameters are divided into three equally

sized groups.

Parameter Estimation. Consider data used to esti-

mate parameters in the lo3arithmic form (base 10). Then,

Eq (3.34) becomes
/t

log tR) a log (a) c tlog(b) (3.35)

The logarithms of the percentage points of reliability are

summed up in each of the three groups to give

n-1 1 iga -S= Z log(R - nlog(a) + [tc log(b) (3.36)
b)= 0 io.(R)taO

rI- !
S2 E log(Rt) . nlog(a) -I log(b (3.37)

t-n 0 J!

3n-1 r3n-1
S3 - Znlog(Rt) nlog(a) +/ c llg(b) (3.38)

t2nLt-Zn Jn

where n the number of points in each group and Rt ethe

percentage reliability for the tth data point. The first

data point in group one is always transformed to t - 0.

Subtraction yields

SSi -S 2 " -tlog(b) t(3.39)" " Ltwo tonJ .

and

[t2n- 3 ni
52 3 Irc E c tlog(b) (3.40)SLt-n t-Zn2

27



Taking the ratio of Eqs (3.39) to (3.40) gives

n-1 2n.-. tE ct -E ct
S1 " $2 to0 ton

. = 2n-1 3n- 1 (3.41)S2 53 r • ct

Sc E-
tan t-2n

By changing the limits of the summation ini the denominator

of Eq (3.41), cn can be factored out to give

c- 2n-11 2ct 0 ctn
"t-O t-n 1 (3.42)s2's 3 -n 1~-1= Lt 2tnn" I cn

Therefore,

C l 2 -3 (3.43)
1 1

which is the estimate for parameter c.

Rearranging Eq (3.39) gives

sI s2_ I s- s 2
log(b) - -I 2n-1 n- i3.44)n.ct E 1c E C ( n) ,

to0 tan to0

Next, a trick is used to get an expression to substitute

into Eq (3.44) for the summation term. Since

n-i + c + c2 + c3 + + C n-1 (3.45)
t-O

and

[ - t] C + + C + (3.46)
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Then by subtracting Eq (3.46) from Eq (3.4S), the fellowing

equation refults

n -c tnctc 1-C (3.47)t-0 Lt-0

Factoring and solving for the first term gives

n-itr 1-cn

Z c = 1 - c (3.48)
tuo

Substituting Eq (3.48) into Eq (3.44) for the summation term

gives the expression

(S - S2)(1-- c)

og(b - -n2 (3.49)

which is the estimate for parameter b.

The final parameter, a, is estimated by making sub-

stitutions from Eq (3.48) and Eq (3.49) into Eq (3.36) and

solving for log(a). The resulting equation is

log(a) 1S (3.S0)n1 [S Cn]

Example. Suppose the data in Table IV summarize

the results of 15 launches of a missile system. Sinc.e no

successful launches occurred until the fourth launch, no

growth was assined and group one (t - 0) starts with launch

number 4 (Ref S6:268). The sum of the groups are

S1 - 1.398 + 1.301 + 1.223 + 1.456 5.378 (3.51)

"S2  1 .574 * 1.647 + 1.699 * 1.736 = 6.656 (3.52)
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TABLE IV

Missile Data for Gompertz Estimation

Launch Success/ t Re!liability log (R)
Number Failure (% R)

1 F

2 F

3 F

4 S 0 25.0 1.398

S F 1 20.0 1.301

6 F 2 16.7 1.223

7 S 3 28.6 1.456

8 S 4 37.5 1.5S7t

9 S S 44.4 1.647

10 S 6 50.0 1.699

11 S 7 54.S 1.736

12 S 8 58.2 1.765

13 S 9 61.7 1.790

14 S 10 64.2 1.807

15 S 11 66.7 1.824

S3 a 1.765 * 1.790 + 1.807 * 1.824 " 7.18C (3.53)

From Eq (3.43)

I1IIF`2 S3 4 fi.iS- - 7 is4 T(.46378 -,,, 656 .802 (3.S4)

and from Eq (3.50)
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log(&) - -1 a 1.890 (3.ss)

Therefore, a - 77.6 - the upper reliability limit.

From Eq (3.49)

log(b) - (Sl iS2)(l - c) -. 740 (3.56)

(lcn) Z

Therefore

b - .182

and the reliability equation is

R(t) = 77.6(.182)"0Z t > 0 (3.S7)

From this equation, the reliability for any past or future

point can be computed. It should be cautioned, however,

that in this case t a 0 is considered the fourth launch and.

subsequently, R(t) is the reliability for the (t * 4 )th

launch.

Virene also cautions that when using this model, a

goodness-of-fit by comparison should be made as r check for

suitability. The argument is, if the model compares favorably
. with existing data, then projections mad* with the model will

also be good (Ref S6:266).

The Donls Model

Austin J. Bonis, of the Rochester Institute of Tech-

nology, used a modified exponential function to model
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reliability growth of one shot devices (Ref 1C:181-185).

The model is not only capable of producing reliability growth

curves from test data, it can also produce a "target" growth

curve for a test program. The target growth curve can be

used to monitor proiress towards the reliability goal set

for the program.

The Model. The mathematical form of the Donis model

is

Rk fm Q-kB (3.Ss)

where

Rk - the reliability on the kth test

Ra a the ultimate value of reliability that could
be attained if k were allowed to increase
without limit

Q - the tiiitial unreliability or probability of
failure before the test begins

B - the 'improvement factor

k * the number of the stage

The constant, Roý will shift the curve up or down by a con-

stant amount.

A somewhat limiting factor is that the improvement

.factor, 3, Is constant throughout the process. This means

whatever improvement factor is estimated, is assumed to be

the constant improvement factor for the entire test program.

Parameter Estimation. The parameters in this model

are estimated by solving the equation that represents the

first three stages (Ref 10:183). The equations for the

first three stages are-
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w0

R = R•. - QB (3.59)

R 2 - Ri - QB' (3.60)

R - It - Q32  (3.61)

- Subtraction yields

.- R2 - -Q(3° - 31) -Q(l -B) (3.62)

and

R2 - R3  B -QCB1 - 32) -QB(1- B) (3.63)

By dividing Eq (3.62) into Eq (3.63)

R3 - 2  (3.64)

which is the estimate for B. Also, solving for Q in Eq

(3.62) gives

Q R Pi :'(3.6S)

Finally, R. is determined by solving Eq (3.59)

. R÷ Q '(3.66)

When using Eqs (3.64), (3.6S), and .(3.66) to esri-

mate the parameters, k is assumed to be a consistent measure

of time. Also, the data points used in the estimating equa-

tion should either be the first three or three consist6nt

groups with the same number of data points in each group.

Example. Suppose a missile development program con-

sists of testing 10 missiles at each stage for 10 stages.
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The desired reliability at the end of the program is 90 per-

cent successes. The first three stages resulted in two,

six, and seven successes respectively. Management wants to

know if the present development will result in a 90 percent

success ratio at the end of the program based on the results

of the first three stages.

In this case, * = 2/10 w .2, R2 a 6/10 a .6, and

R3 a 7/10 - .7. which are the estimated reliability levels

of the first three stages based on the results of the test.

Using Eqs (3.64), (3.65), and (3.66), the parameters are

estimated as

3 R2, 7 -. 61 .1 .5(.73 o i2 .. .

= R 6 .2 .4 (3.68)

R. R1 + Q .2 .53- .73 (3.69)

The answer to the-qUestion posed by the management

is clear before actually calculating Riot because R, is the

highest reliability that can be hoped for in the present

program. However, R10 can be'easily calculated by substi-

tuting in the appropriate values'. Thus,

-. 73-10
lO" .73,- .53(.2s) . .729 (3.70)

which is short of the reliability goal. Of course, manage-

ment can now change the development program and start the

estimation all over again (Ref 10:181-183).
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Othar Models

The Weiss Model. Herbert K. Weiss, of Northrup

Aircraft, Inc., stated that many complex systems, especially

those involving numerous electronic components, are subject

to failures with operating time that follow a Poisson-type

distribution (Ref 57:532). Assuming the mean time to

failure (MTTF) changes by a constant percentage, the model

has the form
ST(i) -Aei (3.71)

where T(i) is the (MTTF) for the tthra or stage, and A

and c are parameters to be estimated.

The assumptions for using the model are, first, a

simple system is assumed where the ?TTP is believed to

change at a rate that is ,unknown on successive trials. In

addition, failures are assumed to occur according to a

Poisson process. Lastly, a series of trials are assumed

with the time to failure on each trial being recorded.

Weiss develops estimates for A and c by the method

of maximum likelihood. The ML estimators must be computed

in an iterative process where an initial value is assumed

for c, and then two values for A are computed from the ML

equations. The process is repeated until the two values

calculated for A are equal (within a specified tolerance).

A nice characteristic of this model'is the ability

to include other functions for T(i). For example, it can

be simplified to T(i) -,A if there isno change in the MTTP

with each successive trial number.
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The Wolman Medel. W.W. Wolman considered a model

which takes into accrimt three distinct outcomes of an

experiment--success, ..nherent failure, or a3ignable cause

failure (Ref S9:144-)60). Inherent failures are considered

random, while assignable cause failures are those that are

attributed to a design weakness or, therefore, correctable.

Wolman uses a Markov-chain approach to derive the model.

The Wolman model suffers from three weaknesses.

First, it requires that the number of assignable cause fail-

ures be known in advance. Second, Wolman has no procedure

defined for estimation of parameters in the model. Finally,

It lacks the ability to make projection about future reli-

ability (Rof 9:41-42).

Barlow and Scheuer Model. Richard E. Barlow and

Ernest M. Sch~uvr, of the University of California at

Berkeley and the Rand Corporation, alco considered a trin'-

mial reliability growth model (success, inherent failure,

and assignable cause failure, as with the Wolman model)

(Ref S:53-60). Unlike Wolman's probabilistic model, theirs

is a nonparametric-statistical model. As with the Wolman

model, inhercnt fatlures are defined as those associated

with a system at the state-of-the-art. Assignable cause

failures are those which can be corrected by equipment or

operational modifications. The reliability of the system

at the ith stage is defined as

Ri- - qo" q1  (3.72)
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where q is the probability of an inherent failure, and qi

is the probability of an assignable cause failure at the ith

stage. The parameters qo0 and qi are estimated by the method

of maximum likelihood (ML).

The assumptions of the Barlow-Scheuer model are that

there will be k stages of testing. At each stage, a certain

number of test trials are conducted which may be fixed in

advance or randomly. The results of the tests from one stage

are used to make improvements to the system at future stages.

In addition, any changes that are made to the system are

assumed to increase the reliability of the system. One of

the problems with the model is that Barlow and Scheuer pro-

vide no functional relationship for the reliability growth

process. This means it is not possible to make reliability

projections (Ref 9:40).

The Gross and Kamins Models. Gross end Kamins, of

the Rand Corporation, investigated four generalized reliabi-

lity growth models (Ref 27:406-416). One of the models was

a generalized form of the Lloyd and Lipow model. The other

models were variations of a model very much like Lloyd and

Lipow's. None of the models emerged as a clear choice, and

Gross and Kamins suggested that yet another variation, an

"adaptive model," would yield good results (Ref 4:18).

Gross and Kamins present several talies and graphs

which show, in a comparative way, the results of their

efforts. In addition, their concluding remarks point out

the significant results of the research in a lizt of nine
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points.

The Pollock Model (Bayesian). Stephen M. Pollock

introduced a reliability growth model that incorporates the

Bayesian concept of prior information (Ref 49:187-198).

Pollock's main objectives were to gain inference on estima-

tion (the present value of reliability) and projection (the

reliability at some future time), with or without continued

application of the correction or growth processes (Ref SB:

472-475). In addition, he includes both continuous and

discrete cases.

Pollock provides a detailed discussion wid rigorous

mathematical presentation of Bayesian methods and how they

apply to reliability growth. He has even taken into account

the notion that reliebility may decrease rather than in-

crease as the development process is administered (Ref 4:30).

The modeling technique presented by Pollock appears to have

good monitoring potintial and also gooA projection capability.

The Sinspurwalla Time Serie, Method. Nozer D.

Singpurvalla, of George Washingt.,on University, has done work

in reliability using time series analysis techniques. In
197S. he proposed a method for forecasting reliability growth

or deterioration based o& a time series analys~s approach

(Ref S3:1-14). He placed particular emphasis on the fact

tbat the time series process he discusses will measure both

an increase and a decrease in failure rate.

The assumptions of the model are, first, outcomes

of each test are determined to be either successos or I
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thfailures. In other words, at the end of the j stage,

indepeadent tests have been completed with r successes.
Sth

If Pj denotes the reliability az the end of the j stage,

then rj is binomially distributed with parameters N and P..
Singpurwalla offers two techniques for directly esti-

mating the parameters Nj and Pj. First, he discusses the

method of maximum likelihood. Then, because it is often

desirable to modify estimators based on prior information,

he suggests using Bayesian estimators. In addition, he pro-

vides a discussion o, how to work with transformations of

the estimators.

The time series analysis Singpurwalla suggests using

is the Box and Jenkins method (Ref 11). This is an autoregres-

sive integrated moving average (ARIMA) model, and the tech-

nique is to model the data and then analyze the residuals.

The determination of a positive trend term would imply

reliability growth is present, while a negative trend term

would indicate deterioration of reliability.

Singpurwalla emphasizes two advantages to his

approach. First, his method does not require a particular

reliability growth model be specified. This implies more

flexibility for the analyst. Next, the method allows the

analyst to incorporate deterministic inputs such as engineer-

ing judgments or managerial interventions (Ref 53:2).

A disadvantage to the approach is that it requires

data in a large number of stages. This is necessary so

trends in the residuals can be determined.
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IV. Dormancy and Dormant Reliability

Almost any system conceived will spend a portion of

its life in a non-operating state. In a non-operating state,

the electrical or mechanical stresses normally associated

with an activated state are not present, but this does not

mean that all stresses to the system are absent (Ref 32:16).

Other stresses may be at work--the environment, transporta-

tion, or handling, to name a few.

Reliability, of course, is state dependent. If the

true reliability of a system is to be known, the nature of

each state of the system must be taken into account. However,

this has not always been done in the past. For example,

Rocco F. Ficchi, an engineer for Radio Corporation Qf

America, stated:

It is generally assumed that parts and equipment
subject to zero electrical stress had zero fail-
ures. This has been shown to be untrue [Ref 24:
421.

- Engineers now realize that reliability in a non-operating

state is very important. For example, certain of our stra-

tegic weapon systems (Minuteman missile system, for one)

spend all their life in non-operating states. In addition,

new weapon systems, like the cruise missile, are being built

which will spend most of their life in a non-operating con-

dition (Ref 32:7). This has led to an increasing interest

in the reliability of non-operating systems (Ref 32:11).
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Definitions

Non-operating State. A non-operating state is actu-

ally a set of states that can be divided into several'subsets.

Examples of these subsets are: storage, inherent dormancy

(totally non-operating but not in storage), and operationally

ready storage (awaiting operational use with some subsystems

energized) (Ref 32:17). However, in this study it is not

purposeful to differentiate between the different non-

operating states. Therefore, terminology which has been more

precisely defined elsewhere will not be used here. Instead,

the following definitions will be used to refer to a general

non-operating state.

Dormancy. This is a state where a system experiences
either no operational stress, or very low levels of opera-

tional Stress (Ref 24:25). Dormancy can include such states

as non-operating portions of alert, transportation and

handling, and launcher carriage as examples (Ref 32:18).

Dormant Reliability. Reliability- is defined as the

probability that failure does not occur before a specified

time (see Eq 2.2). CUnsistent with this definition, dormant

reliability will be referred to as the probability that a

system in a dormant state does not fail prior to a specified

time. In other words, dormant reliability is the reliability

of a system in a dormant state.

Methods of Analysis

Dormant reliability analysis has been identified as
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falling into three broad categories (Ref 32:27). These

categories are: 1) parts count and stress analysis; 2)

failure rate modification factors (K factors); and 3) test-

ing (accelerated and field testing). Each of these methods

have good and bad points, which helps indicate which to use

in a given situation. In the following paragraphs, each

method will be briefly described stressing important points

of each method.

Parts Count and Stress Analysis Method. This tech-

nique assumes that system reliability can be calculated if

the reliabilities of each component are known (Ref 32:27).

The failure rates of each component arz determined and then

summed together to get the system failure rate. The ¢.-

ponent failure rates are often obtained from tablcs like

the MIL-HDBK-217C. These tables are the results of both

empirical data and laboratory testing on previous equipment

(Ref 39).

This method has been used extensively in the design

phase of systems or subsystems (Ref 32:27). It is parti-

cularly useful as a comparative evaluation, but it has not

been conclusively checked against empirical data from dor-

mant systems, For this reason, it is not likely that the

operational analyst would use this procedure for dormant

reliability prediction (Ref 32:27).

Failure Rate Modification Factors. Adjustments to

failure rates which account for varying stresses, like the

environment, are generally called K factors (Ref 32:28).
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The idea of K factors is to modify the failure rate ow a

system to achieve more accurate predictions. K factors are

usually developed from field data or laboratory testing with

systems or components (Pai 37:28-29).

It is important to stress that K factors must be

used with caution. Unless specifically validated against

empirical results, K factors could simply be wronb,. However,

they have been used with good results 4-P certain situations

(Ref 32:60).

Testing. Testing is probably the most desirable

method of analyzing dormant reliability; however, it is also

the most expensive. The two factors that are primary consi-

derations in any testing program are sample size and time

(Ref 32:30). Of course, both of these factors can be measured

in dollars. Many times, a limited budget makes it impossible

to use testing to analyze a dormant system.

Testing may be done in either real time or in an

accelerated way (Ref 32:30). Accelerated testing can be

used if the predominant failure mode is known. For example,

if seasonal'humidity cycles (changes in relative humidity

with the seisons) are known to cause a seal to fail in a

hydraulic system, then the humidity cycles can be accelerated

in the laboratory to simulate real time data. This has been

shown to be very effective way of determining failure rates

(Ref 32:31). However, it i. ;mportant to remember that it

is not exactly the same as re.al time data. There could be

unforeseen failure mechanisms that would not show up iL the
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accelerated test data. For this ijason, acceleratod test

data should be taken in thc proper context.

Real time testing or surveillance testing, on the

other hand, uses data gathered from actual environmental

conditions (Ref 32:32). Given the time and the appropriate

sample size, this method can be a very accurate way to

determine Jormant reliability. However, the failure mechan-

isms in dormant systems are often very slow to surfact.

For instance, it could take years of dormancy before a de-

crease in reliability of an electronic circuit would be

noticed (Ref 21:14). For this reason surveillance testing

is not always practical (Ref 32:33). Also, it is generally

very expensive to administer a surveillance test which is

another reason why other methods of testing are often chosen.

Dormancy Modeling

Dormant systems are generally characterize4 by

changing failure rates that are increasing over time. The

problem with modeling most dormant systems is usually due

to the slow rate at which failures occur. The failure rate

may change only minutely in the first several years of an

equipment's life. The variance in a set of data is, at

times, large enough to completely mask dormant reliability.

For example, Dickhaut and Dudley did a study of the long-

term storage of microelectronic components, and were

completely unable to make predictions based on data that

were available (Ref 71:40-44). The problems encountered in
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the study werv ttpified by data with too much variability

to provide statistical trends. Iu addition to very slow

changes in failure rates, dormant systems also have quite

small initial failure rates in man/ cases. Failure rates

of microelectronic devices, for example, can be as low as

I x 10"9 units (Ref 8:3-S to 3-324). Again, this means

variability in measurements can be a problem when analyzing

data. Even though problems with dormant data exist, attempts

have been made to model dormant systems, particularly during

the design phase.

Dormant reliability modeling in the past has been

done most often in conjunction with life-cycle modeling in

the design phase of systems (Refs 1; 7; 8; 20; 21; 23; 34;

35). Life-cycle modeling takes into account the reliability

of each phase of a system's life (Ref 32:C-1). Dormancy,

under this concept, consists of periods of time in the life

of a system where the system is in a dormant state. The

failure rate modification method is used to determine a

failure rate for the specified time period and the environ-

mental condition3 that are assumed for that time period.

This failure rate is then used as the parameter in the nega-

tive exponential model and the reliability can be #alculated.

This technique is used under the concept of "periodic

testing" or "no testing" (Ref 32:C-2). Under the "periodic

testing" concept, the system is tested at certain intervals,

and if necessary, repaired. This brings the reliability

level back to the original level or very nearly so. It
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should be noted that no evidence was found (in the form of

technical reports) of this technique being validated with

empirical data.

The literature search on dormant reliability pro-

* duced no widely accepted modeling techniques on operational,

systems. Reasons for this have not been specifically

defined. However, one could speculate that th. cost of

gathering empirical Aata has been judged to outweigh the

information received f2zom the data. Also$ the military may

be one of only a few organizations with a real concern about,

dormant reliability. After all,, private sector businesses

are generally concerned with producing and selling, not

with sto-Ing.
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V. The Monte Carlo Exveriments

The fact that both reliability growth and dormant

reliability are characterized by changing failure rates

was the motivation for the Monte Carlo experiments. Certain

reliability growth models use the method of fitting a curve

to a set of data. From the curves, which smooth the date,

reliability estimations can be inferrid. Some reliability

growth models are capable of modeling data that has either

a decreasing failure rate (reliability growth) or an increas-

ing failure rate (as with dormant reliability). With some

models, the original assumptions may have to be changed to

handle increasing failure rates, but this problem can

usually be overcome. For example, the parameter (a) in the

Duane model is assumed to be between zero and one if reli-

"\i ability growth is present. However, by changing this

assumption and allowing a to take on values greater than

one, an increasing failure rate can be modeled. Therefore,

models like the Duane can be considered candidates for

dormant reliability modeling.

The purpose of the Monte Carlo experiments was to

observe rc.ults of modeling attempts, i.e. modeling dormant

data with raliability Srowth models. The -!esults are

important becauise they potentially provide a new methodology

for analysts who work with dormant data. There is already
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a good variety of reliability growth models in existence,

and the methodology behind most of them is well developed.

Any evidence that shows reliability growth models to be use-

ful in modeling dormancy would provide alternative methodo-

logies to solve the problem.

Monte Carlo techniques were chosen to generate data

for the experiments for two reasons. First, no data from a,

dormant system could be found that was suitable for the

experiments. Only one good set of data was obtained. This

"data was the result of field tests in the AGM 65 A/B

(Maverick) missile system. The problem with the data was

that it showted too small an Increase in the failure rate to

be useful in a comparative analysis and, therefore, was not

used.

The second and most important reason Monte Carlo

methods were used was to have control over the underlying

failure distributions of the system. Since the underlying

distributions were known, the true system reliability could

be calculated and used as a comparative basis for the

"goodness-of-fit" measures. In addition, the underlying

distribution can be easily changed for future experimentation.

Models Tested

Three reliability growth models were selected for

the experiments. They are the Gompertz model, the Bonis

model, and the Duane model. There were three primary fac-

;Ts considered in the selection of these models. First,
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any model chosen had to have the ability to predict future

reliability (this is an extrapolation of the estimated

function). All three models met this requirement. Second,

the underlying assumption in the models chosen had to be

such that dormarnt data could be modeled. Again, the three

models chosen met the requirement. Lastly, because computer

time was a constraint, it was desirable to select models in

which the parpmeters were relatively easy to calculate. The

design of the simulation called for the parameters to be

estimated 1200 times for each model. Therefore, models that

require iterative parameter estimation techniques were ruled

out. An additional factor that was considered was the popu-

larity of the models in the military. These three models

have been used extensively in military programs, particularly

the Duane model. For these reasons, it was decided that the

three models chosen would represent a good set for initial

experimentation.

The Gommertz Model. This model has three parameters

which are estimated from explicit equations using time

dependent data. Mathematically, this model is represented by

R(t) = abc (5.1)

This same form was used to model the dormant data with one

exception. The parameter a is defined as the upper value of

reliability of a system (see the discussion of this model in

Chapter III). In the zimulation, the assumption was made

that all systems that woro placed in storage at the beginning
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of the testing program were nonfailed (good systems). Since

parameter a represents the highest attainable reliability,

this implies that a * 1, and the functional form of the

model reduces to

R(t) * bct (S.2)

where

R(t) a the probability the system will be a
success at time t

b - the base parameter

C - the shape parameter

t a time

The parameters b and c were estimated using Eqs

(3.49) and (3.43) respectively. To make Eq (5.2) a valid
/ measure of'reliability, the parameter b must be restricted

to values between zero and one. Also, if an increasing

failure rate is assumed, c must be strictly greater than one.

If these conditions were not met in the simulation, the model

was considered invalid. The primary cause of not meeting

the restrictions was not enough consistent data.

The Bonis Model. Assumptions concerning the data

when using the Bonis model are similar to those when using

the Gompertz model. The data must be used in three conse-

cutive groups (see the discussion on the Bonis model in

Chapter III). The form of the Bonis model is

]Rk = Re QBk' (5.3)
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R* represents the upper limit of reliability as k is increased

without bound (see the discussion of this model in Chapter

III). This parameter is very similar to the parameter a in

the Gompertz equation. Also like a in the Gompertz equation,

R. is assumed to be one, because all nonfailed systems are

assumed at the start of the test program.

The other two parameters, B and Q, are estimated with

Eqs (3.64) and (3.65) respectively. Since Q is defined as

the initial unreliability, its value was restricted to bet-

ween zero and one. In addition, B must be strictly greater

than one if an increasing failure rate is to be represented.

Once again, if these ass,imptioris were not met, the model was

considered invalid.

A particular problem with the Bonis model is that it

has no inflection point, and Rk will decrease without bound

when used to model dormant data. In other words, once the

reliability starts a downward trend, it continues downward

without bound as k is increased. Extrapolated values for

reliability obtained from this model are invalid after a

certain point. However, there is still a rationale for

using the model. For instance, many times an analyst may

be interested in finding the time (k) where the reliability

level of interest is relatively high (generally above the

inflection point in the true reliability curve); the Bonis

model should provide acceptable results.

The Duane Model. The Duane model uses two methods

of parameter estimation--the graphical technique and least
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squares estimators. The least squares estimators are a

mathematical representation of the graphical technique.

Therefore, least squares was chosen to estimate the para-

meters. The Duane mod'i is given as

N(t) - Kt (S.4)

where

N(t) = the cumulative number of failures

a - the decreasing reliability rate constant

K - a constant that represents the cumulative
failure rate at t * 0

t - time

Dividing Eq (5.4) by t and taking logarithms gives Eq (3.4),

which is used to estimate the parameters a and K.

Once the two parameters have been estimated, they

are used in Eq (3.3) to obtain instantaneous failure rates

for values t. The instantaneous failure rates are trans-

formed into reliabilities using the negative exponential model.

The r&cionale for using the Duane model is that with

reliability growth, the cumulative failure rate was a de-

creasing function of time.' With dormant reliability, the

opposite occurs; the cumulative failure rate'increases'with

time.

Simulation Methodology

The methodology was to use Monte Carlo techniques to

generate sets of dormant data which were subsequently modeled

with reliability growth models. After the, ..a were modeled

S2
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(param3ters estimated), reliabilities were estimated using

the functional relationships associated with each model.

The estimated reliabilities were then compared with th' true

reliabilities based on the underlying failure distributions

which were used to generate the data. The result was a set

of relative measures (which can be thought of as relative

goodness-of-fit measures) of the model against the true

system reliability.

The System. In order to add a sense of realism, a

fictitious missile system was contrived which will be re-

ferred to as hypothetical missile system one (HM-1). The

HM-1 consists of five independent subsystems in series:

1) the propulsion system; 2) the servo-mechanical fin actu-

ator; 3) the arming system; 4) the gyro; and S) the electro-

nic control system. Each subsystem has a separate failure

distribution associated with it. The WeLbull failure dis-

tribution

B-1 B
f(t) - Bt EXP - t D.o (s.s)

was assumed to be the underlying distribution in each sub-

system. In this distribution, B is the shape parameter

(governs the shape of the density function), and e is the

scale parameter (stretches the density distribution out)

(Ref 30:22).

The five subsystems and their associated parameter

values are shown in Fig. 2. Of course, the knowledgeable
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reader will realize that the five separate distributions

could have been combined into a single ifeibull failure dis-

tribution because the shape parameter, B, is identical for

each subsystem. However, the computer simulation was

written with the intent of making future changes to the

failure distributions of the subsystems. Therefore, even

though one distribution could have modeled the entire system

in this case, separate distributions were used to maintain

generality.

'In each subsystem, the shape parameter, B, was given

*1a value of four. Even though the value of B was arbitrary,

the intent was to closely approximate the normal distribu-

tion (Ref 30:294). In other words, it was assumed that the

failures of each subsystem were normally distributed, but

were approximated by the W~eibull distribution with B - 4.

The scale parameters were contrived so the system would de-

crease in reliability from one to approximately zero as

time (t) was increased from zero to 20. The reasoning

behind this was to force the models to contend with a full

range of reliau."~i ties and see how well1 the predictionst would be under this contenltion.
Data C'nerbtion. Monte Carlo techniques were used

to generate data for the modeling experiments. Tht were

generated as either a missile failure or success. The steps

for determining the successes or failures in a set of dataI are as follows:

1. The reliability of each subsystem was calculatedI 55



for the specified value of time (t).

2. Generate a random number for each subsystem and

compare it with the subsystem's reliability

calculated in Step 1.

3. Since the subsystem reliability is defined as the

probability of a success, the subsystem was con-

sidered a success if the random number was less

than the calculated reliability.

4. Zach subsystem is independent and, therefore, all

subsystems must be successful if the system is to

be a success.

S. Repeat steps two through four until the desired

number of missiles per time period have been

tested.

6. Increment t, where t l 1,2,3,...,12, and repeat

the process until the desired number of years

of data have been generated.

The computer used for the simulation was an Apple II

microcomputer. The internal pseudoraudom number generator,

FND( ), was used to generate the random numbers. The vali-

dity of the random numbers was checked with two separati

serial tests (Ref 41:57-59) done on two separate random

number streams of 100,000 random numbers each. In each

serial test, 100 chi-square statistics from a frequency test

were used as input to another chi-square test CRef 41:57).

The results were values of 5.600 and 6.600 for the chi-

square statistics compared w~th a critical value of 14.684
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at a - .10 level of significance. It was concluded that
, was a satisfactory pseudorandom number generator for

the experiments.

The Testing Procedure. In the simulation, the test-

ing schedule was varied with the intent of finding which

model would work best in a given situation. Also, it was

hoped to gain an insight into how much data were needed

for one model relative to another.

The first assumption is that a large amount of HM-1

mis.,;iles were produced and placed in storage at t - 0.

Each time period (which could be thought of as years), a

specified number of missiles are brought out of storage and

tested. For example, in the first simulation run 50 missiles

per time period were brought out of storage and tested. This

was the first testing policy used with eacL model.

After six time periods of testing, the data were

modeled and the reli-bilities, R(t), for t 1,2,3,...,20

were estimated. This is considered one set of reli.Luili-

ties (which can be thought of as one dormant reliability

curve) based on one set of random numbers. This process was

repeated SO times using different random numbers each time..

The result was a set of reliabilities Rift) where i =

l,2,3,...,!0 and t - 1,2,3,...,20. Using the central limitt

theorem (Ref 37:2S2), the mean and variance for the Ri(t)'s

were calculated for t - 1,24,,..., 20 where the mean is
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"" RiCt) (S.6)
i-i

and the sample variance is

so (R[(t) -

S(t) - i- n-I

The mean, A(t), was the dormant reliability curve that was

used for the comparison with the true system reliability

curve. This will be discussed in further detail later.

The next logical step was to add more data. This

was first done by leaving the same test program in effect

(SO missiles per time period tested), but instead of using

only six time periods of data, nine time periods of data

were used. Increments of three time periods were chosen for

increases in data be'ause the Gompertz and Bonis models both

require data in three equally-sized groups. Finally, 12 time

periods of data were used to make estimates with the same

test program in effect. This resulted in three sets of

E(t)'s or three average dormant reliability curves, one for

six, one for nine, and one for twelve time periods of data.

The preceding procedure was considered to be one

simulation run based on one test program. The final step

was to change the test program from SO missiles per time

perioG tested to 100 missiles per time period tested in

increments of 10. This meant that six different simulation

runs were made on each model with each run using a different

t,3st program. The idea was to start with a minimal amount
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of data, increase it by increments, and observe the behavior

of the dormant reliability curves as more data were used.

Relative Measures

In order to include a numerical comparison of how

well each model did under a given test program, three rela-

tive measures were used. These measures (Ml, M2, and M3)

can be •hought of as relative goodness-of-fit measures and

are similar to ones used by Toke Jayachandran in his stuly

on reliability growth (Refs 28; 29).

Measure One (Ml). This measure is simply the sum

of the discrepancy between the true reliabilities, R*(t),

and the average reliabilities, 11(t), for a given test pro-

gram. Mathematically, the measure is

20
Ml - Z IR*(t) - I(t)l (S.8)

tal

where t is the time periods. Ml measures the total distance

the average reliability curve [1(t)) is away from the rue

reliability curve [R*(t)] at each of the 20 time periods.

Measure Two (M2). This measure is the sum of the

squared values of Ml at each of the 20 time periods. This

measure is closely associated with the sum of the siuared

errors which is used in regression analysis. The fo.-u of

M2 is

20
M2 Z [R*(t) - (.(t)]2  (59)

t$l
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This measure emphasizes average reliabilities that are

grossly different from true liabilities.

Measure Three (M3). M3 is defined as the maximum of

the squared different,- between the true reliabilities

[R*(t)) and the average estimated reliabilities (k(t)]. The

equation for M3 is

M3 - Max([R*(t) - K(t)] 2  (S.10)
t

Each of these three measures was calculated for

each average dormant reliability curve estimated [K(t)].

This resulted in 18 sets of measures, one set for the test

program where S0 missiles per :5ae period were tested and

six time periods of data were used, another set for S0

missiles per time period tested and nine time periods of

data used, and so on. The number of missiles tested per

time period ranged froz 50 to 100 in increments of 10, while

the number of time periods of data used was six, nine, or

twelve. Thus, a total of 18 sets of relative measures were

calculated.
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VI. Simulation Results

The results of the Monte Carlo experiments were not

as consistent as hoped for. That is, the models did not

behave as well as expected. For instance, the predictions

from both the Duane and Gompertz models were further from

the true reliabilities when the number of time periods of

data used was increased from 9 to 12. For the Duane model,

this bappev,,d only when 90 or 100 missiles per period were

tested. However, this phenomenon took place in every case

with the Gompertz equation. On the other hand, the Bonis

model .,,i generally more consistent. However, the Bonis

equation Lenerally required more data to achieve relative

measures that were as good as either the Duane or Gompertz

model. Also noted was the fact that increasing the number

of missiles tested per time period did not make much differ-

ence in a model's ability to predict future reliability.

On the other band, increasing the number of time periods of

data used to estimate parameters made the reliability pre-

dictions significantly better.

The results of the simulation are shown graphically

in Fig 3 through Fig 20 at the end of the chapter. Also,

the relative goodness-of-fit measures (M1, MZ, and M3)

follow the graphs in Tables V through X.
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Results Using the Gompertz

Equation

The most notable inconsistency evident from the

relative measures involves the Compertz equation. The

measures indicate better results when nine periods of data

were used instead of 12 with every test policy. In other

words, the predictions were worse when more data were used.

The reason for this inconsistency is not completely under-

stood. However, there were two observations noted that

help explain this occurrence.

First, the dormant reliability curves generated by

the Gompertz equation are quite sensitive to the base para-

meter, b, from Eq (5.2) .... For example, with the shape para-

meter, c, set equal to 1.4 and b a .99, the reliability at

10 tiw* periods, R(10), is .75. However, when b was changed

by .'Av' to .99S, R(10) - .87, a difference of .12. This

points %" %e fact that if b is estimated slightly high,

the result wi be a dormant reliability curve that over-

estimates the true -liabilities (shifted to the right).

From the graphs, this appears to be the case with the

There was also a second trend noticed with the

Gompertz model. The shape parameter, c, governs the rela-

tive steepness of the reliability curves at the inflection

point. The higher the value of c the steeper the curve

will be. Therefore, if the base arameter, b, is estimated

too high, the scale parameter, c, can compensate by making
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the curve steeper. This will cause the predicted reliabil-

ity curve to cross or at least converge toward the true

reliability curve. This occurred with every testing policy

when nine periods of data were used. The average base para-

meter, b, was always the greatest when nine periods of data

were used (.996 to .998), but the shape parameter, c, always

compensated by being higher when nine periods of data were

used rather than 12 (approximately 1.65 compared to 1.45

for 12 periods of data). The reason for this was not deter-

mined, but it resulted in better predictions when nine

periods of data were used in every case.

The observations made on the Gompertz model can be

visualized in the graphs of Fig 3 through Fig 20. It should

be noted, that the data used to estimate b and c was cumula-

tive in nature. This was according to the example suggested

by Virene (Ref S6). This means the percent reliability

levels used were cumulated percentages of all the data from

time t - 0.

Results Using the Bonis

"Equation

The Bonis model was generally more consistent than

either the Duane or Gompertz models. Under every testing

policy, the relative measures improved as more data were

made available. The problem with the Bonis model lies in

the fact that more data were needed to get results that

compared equally with the Duane and Gompertz motels. This

was due in part to the fact that the Bonis model does not

63

a'-



have an inflection point. This means the reliability pre-

dictions decrease without bound once the downward trend has

started. This makes the model unable to predict reliabili-

ties in the right-hand tail of the reliability curve. This

can be seen in Fig 3 through 20. However, the reliability

predictions made with the Bonis model appeared to be accept-

able for all reliability levels prior to the inflection

point of the true reliability curve. In many cases, the

fit of the Bonis model appears closer in the early time

periods than either the Duane or Gompertz models.

Results Using the Duane Model

The Duane model generally required more data than

the Gompertz model, but less than the Bonis model, to get

equal results. As with the Gompertz model, however, it also

was inconsistent in some cases. For example, as the number

of missiles tested per period was increased from 70 to 100,

the relative measures increased slightly, indicating the

predictions were getting worse. This occurred only when 12

periods of data were used to estimate the parameters. Also,

the measures increased when the time periods of data were

increased from nine to 12. However, this was only the case

when 90 or 100 missiles per period were tested.

Like the Gompertz model, the reason the predictions

of the Duane model were getting worse appeared to be a shift

in the predicted reliability curve. Unlike the Gompertz

model, however, the Duane cures shifted to the left rather
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than to the right. One reason for this shift may' be in the

way the parameters are estimated. From Eq (3.4), it is ob-.

vious that the dependent variable, ln[N(t)/t], is undefined

when N(t) (cumulative number of failures) is zero. This

means that until a failure occurs, data points cannot be in-

cluded in the regression equation. During the simulation,

the system reliability was high enough in its early life to

cause no failures in time periods one through three. At

times, there would be no failures until as many as five or

six time periods. Of course, the fact that no failures take

place early in the system's life is taken into account in

some respect by the cumulation of data. However, it must be

re-emphasized 'that once a change in the failure rate is esti-

mated with the Duane model, th~e change is assumed to be con-

sistent throughout the extrapolation. For example, if there

are no failures for the first three time periods and nine

time periods of data are used to estimate the parameters,

then the last six time periods are used to model the changing

failure rate of the system. The model is then extrapolated

back to t - 1 as well as forward to t - 20. The problem is

that the failure rate modeled from time period three to time

period nine is changing at a faster rate than was the case

during the first three time periods. This causes the pre-

dictions to be less than would ordinarily be the case. This

phenomenon can be visualized from the graphs.

It was also irteresting to note how many times there

was not enough data for meaningful results. Thu.s statistic,
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along with the means and standard deviations of the predicted 1

relawith theS meanfor all the models is included in the
reliability curves

AppendiX.
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Fig 3. Comparison of Mean Estimated Curves
(6 time periods - 50 missiles)
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TABLE V

SO Missiles Per Pcriod Tested

Six Periods Data Used

Model M1 M2 M3

Gompc7z 1.388 .234 .054

Bonis 3.502 1.463 .461

Duane 3.486 1.409 .269

Nine Periods Data Used

Model Ml M2 M3

Gompertz .898 .058 .007

Bonis 1.965 .553 .222

Duane 1.913 .429 .080

Twelve Periods Data Used

Model Ml M2 M3

Gcmpertz 2.506 .534 .083

Bonis 1.262 .164 .069

Duane 1.440 .216 .037
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TABLE VI

60 Missiles Per Period Tested

Six Perijds Data Used

Model 11 1213

Gompertz 1.791 .419 .102

Bonis 2.826 1.031 .334

Duane 3.167 1.073 .216

Nine Periods Data Used

Model Ml IN2 r13

Gompertz .528 .024 .004

Bonis 2.035 .602 .221

Duane 1.348 .182 .037

Twelve Periods Data Used

Model Ml 112 1-3

Gompertz 2.372 .498 .035

Bonis 1.:99 .126 .043

Duane .882 .063 .013
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IABLE VII

70 Missiles Per Period Tested

Six Periods Data Used

Model Ml M2 M3

Gomportz 1.361 .196 .043

Bonis 3.360 1.425 .461

Duane 2.961 .814 .159

Nine Periods Data Used

Model Ml M2 N3

Gompertz .971 .068 .010

Bonis 1.95S .543 .221

Duane 1.3S4 .164 .034

Twelve Periods Data Used

Model h1 N2 K43

Gompertz 2.138 .429 .076

Bonis 1.260 .165 .069

Duane .908 .058 .008
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TABLE VIII

80 Missiles Per Period Tested

Six Periods Data Used

Model Ml M2 M3

Goapertz 1.310 .198 .040

Bonis 3.268 1.388 .461

Duane 2.469 .982 .185

Nine Periods Data Used

Model ml X2 M43

Goapertz .769 .047 .009

Donis 1.948 .549 .221

Duane 1.372 .ISS .028

Twelve Periods Data Used

Model Ml 342 143

Goupertz 2.425 .S32 .093

lonis 1.143 .132 .042

Duane .97S .067 .009
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TABLE IX

90 Missiles Per Period Tested

Six Periods Data Used

Model m1 )42 M3

Goupertz 1.459 .194 .028

Bonis 3.765 1.774 .461

Duane 2.316 .481 .091

Nine Periods Data Used

Model MI 142 M3

Gompertz .748 .0S3 .012

Donis 1.790 .492 .221

Duane 1.226 .104 .012

Twelve Periods Data Used

mdel M1 M2 X3

Gompertz 2.468 .552 .0t6

Donis 1.189 .148 .0SS

Duane 1.188 .113 .019
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TABLE X

100 Missiles Per Period Tested

Six Periods Data Used

Model Ml M2 M3

Gompertz 1.481 .226 .048

Bonis 3.769 1.785 .466

Duane 2.402 .S02 .100

Nine Periods Data Used

Model 141 12 M3

Gonpertz .801 .052 .010

Bonis 1.852 .10 .221

Duane 1.490 .160 .024

Twelve Periods Data Used

Model M1 M2 M3

G~zpartz 2.395 .522 .092

Bonis 1.132 .126 .032

Duane 1.473 .183 .031
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VII. Conclusions and Recommendations

Military engineers face many important reliability

problems. New weapon systems are being designed continu-

ally, and many of these systems are to be placed in long-

term storage or dormancy. Th6se facts make both reliability

growth and dormant reliability important cor.emns to mili-

tary analysts.

!This study provides evidence that a co.mwon attribute

of reliability growth and dormant reliability (both are

assumed to have changing failure rates) can be the basis of

modifying reliability growth methodology tor predicting

dormant reliability. In Chapter I1I, the methodology used

in reliability growth analysis is presented. Included in

this section are the mathematical developments and examples

of how to use five well-known reliability growth models.

Also,,general descriptions of many other reliability growth

models ars outlined. This section was the foundation for

the Monte Carlo experiments discussed in Chapters V and VI.

These two chapters tie together the efforts of this study

by presenting results of attempts to use reliability growth

models to predict dormant reliability.

The results of the simulation indicate that it is

possible (at least potentially) to predict dormant relia-

bility with reliability grovth models. The graphs shown in

gi9i
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Chapter VI indicate good reliability prediction in many

cases. However, it is important to point out that some of

the underlying assumptions of the reliability growth models

had to be modified before they were used to predict dormant

reliability. In addition, inconsistencies were encountered

with the Duane and Gompertz models which could not be re-

solved analytically. These points emphasize the fact that

additional work in this area is needed before any specific

conclusion can be made.

Recommendations

This study is believed to be the first attempt to

use reliability growth models to predict dormant reliability.

Of course, this means there are many areas which deserve

further study. It is recommended that the reader who wishes

to 4o additional work in this area consider the following:

1) Explore the problem of the shift in the predicted

dormant reliability curves that was notices with

both the Duane and the Compert: models.

2) Use Monte Carlo techniques to generate dormant data

to be modeled by other reliability growth models.

The time series analysis suggested by Singpurvalla

(Ref 53) appears to have excellent potential.

3) Analyze the results of using other failure distri-

butions fer each of the susisystems of the H4-1.

4) Develop confidence bound for the predicted dou'nant

reliability of the RN-1 using Monte Carlo techniques.
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It is also recommended that this stu.y be used as:

1) An introdAction to reliability growth.

Chapter III can be considered in introductory text

to reliability growth and reliability growth

modeling.

2) A major reference source for reliability growth.

3) Pn example for further Monte Carlo analysis of

dorma:t reliability using reliability growth models.
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PPENDIXu SIMULATION DATA

IABLE XI

compertz Means and Stadarn d Deviations
W~m 50 Missiles per Period Wer Used

6 Periods D&lke 9 PerIods Data 12 Periods Data

t men Std-Dv Mean Std-Dv "man Std-Dy

1 .991 .012 .996 .005 .994 .006
2 .990 .013 .995 .006 .992 .007
3 .997 .013 .9"3 .007 .90 .009
4 .9w .012 .990 .00 .99 .010
3 .976 .011 .994 .010 .981 .012
& .964 .015 .979 .011 .97" .014
7 o941 .035 .967 .011 .944 .015
a .990 .00 .o47 .014 .953 .016
9 .823 e175 .913 .031 .934 .016

10 .732 .279 .62 .078 .908 .015
11 .443 .343 .756 .163 .970 .019
12 .54 .370 .634 .253 .817 .040
13 .300 .3" .0518 .291 1744 .078
14 .437 .30i .413 .292 .e51 .127
15 .37 .*34 .318 .284 .541 .168
16 .332 .403 .240 .266 .434 .188
17 .299 .407 oleo 0245 .329 .192
16 o276 .406 .137 .219 .236 .186
19 .260 .40m .105 .191 .163 .170
20 .246 .40M .000 .143 .110 .149

#aer of Invalid Estimates Out of 50 Tries

& Periads Data 9 Prlods Dwta 12 Periods Data

34 4 0

7 100



T7 L= XII

C•n rtz t:r7-'nu and Ltcidrd Deviations

I,7n 60 'iszilas .r cricAd -ar@ Used

6 Puricji iat 9 i,':ric ui ata 12 Periods Data

t rn td-Dv r .... an Std-Dv

1 .11 .01z .C*77 . -0,3 .9175 .004
2. .- :i7 .A93 .005
3 1V .C . ',1 ,3 .991 .005
4 . •:s .1,37 .007

3 .197 . .c 1: . A, f2.-I .loc
6 .1757 .C .. 1!, "7 .976 .009

7 .C23 I' oJ c.?4 .1
10 .7=31 :0 .~ 90 .1

11 6.C27 . C. .01.05

12 .C12 .A, .ýý .:. : .017 .027
13 .47Z) ."1 1111.23 .74.6 .05.00

15 .,400 .. C j Z;I7 .;U • .44 .121

16 .Z7a ., .13 .,7"3 .423 .150
17 .764 .4, A .1,, .2U- .=07 .158

19 .3-A4 .C ') .177 .129 .129
20 Z.4 . Z,: .c IýZ• .A L a .074 .105

- ~~'-~rc-f lnv-~1id Out of ZO Tries

6 Priaicm V 9 r Da i~ta 12 Periods Data

2. 0 0

I II

0.



TARLE XII

* wtz Mmen and Standad Daviations
Wen70 " i suills per Period Ware Used

6Period* Data 9 Periods Data 12 Periods Dat

t n ted-v Mean S~d-Dv Mean $td-Dv

1 .99 .00 .96 005 .995 .004
2 .9 .010 .99 .0004 09 Ow
3 .992 .0106 M92 .000
4 .989 .090 .949 .0007 9 .007
9 .9m .010 .917 .*008 .94 000
& .971 .015 .09 .000 .9"3 .009

8 o99P7 00"1 .949 .011 .9w o012
9 .009 A 93 o917 son3 09M .012
1 0 e&92 e303 *"3• 0056i .9"1 *012

11 .so2 .371 .781 .119 .946 .014
12 .496 .403 .*47 .199 .e13 .025
13 .434 .411 .5= .0 .737 .049
14 .3W .403 .417 .281 .463 .062.15 .345 . 395• *314 .2113 0519 * 122

1I .e06 .391 .233 .270 .390 .154
17 .275 .3M . 173 .252 .271 .164
111 .253 .390 . 131 .231 0174 . 150

19 .237 .370 .101 .212 .108 .123
20 .221 .360 .00 .195 .063 095

Mur of Invalid Estitetsm *t of go Tries1 Periods Data 9 Peods Data 12 Periods Data

13 ,0 0
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TABLE XIV

ompdtz t m#% s and Standard Devi atians
When 60 ssiles per Perlod Wre Used

Mean S__ --D_ r 8td-vv I'"an std-Dv

1 .1.994 .010 .,w .003 .", 003
2 .993 .011 .99 .006 .994 .00
3 .991 .013 .994 .007 .*"1 .005
4 .990 .011 .991 .007 .900 .000
5 .902 .010 .9"4 .00 .9w3 .006
6 .971 .013 .979 .0so .976 .007
7 .940 .036 .96-8 .000 .967 .00J0
a .901, .096 .940 .010 .9= .009
9 .W0 .202 .915 .027 .934 .009

10 .721 .20 .a"9 .070 .908 .009
11 .022 .344 .772 .142 .871 .010
12 .34 .*32 o.68 .215 .*= .010
13 .468 .396 .534 .252 .7J4 .0s
14 .416 .392 .41& .2M .47 .*06
15 .372 .363 .306 .247 .050 .*00
16 .331 .372 .214 e224 .439 .112
17 .293 .361 .147 .193 .316 .129
If .261 .349 .095 .144 .206 .127
19 .233 .336 .061 .143 .123 e112
20 .209 .322 .040 .128 .067 ,091

Nmber of Invalid VI•tUmIates Out _ 80 Trims

6 P•riods Data 9 feriods Data 12 Periods Data

4 0 0

103
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!

iOOPM-' Mnimm and Standad Dviatlaons
1w, 90 Missilles pe Period Uw Used

4 Periods Date 9 Periods Data 12 Period* Data

t "won 8td-Dv Mean Utd-Dv Man Std-vO

1 .995 .009 .0 .002 .995 .004
2 .99 .009 .997 .002 .994 .005
.3 .993 .009 .05 .003 .991 .006
4 .9"0 e009 .993 .004 .963 .007
5 .9w5 .009 .96m .005 .9m3 .000
6 .97". .012 .91 .006 .976 .009
7 .944 .037 .770 .006 .967 .011
a am73 0110 o.va ,011 .054 ,012
9 .- 31 .21 .920 .01 .93a .013

10 o413 .364 ,In9 .035 0910 e013
11 .515 .395 .790 .0*4 oi74 .014
12 .438 .405 .474 .113 .*C 0019
13 .378 .404 .= .14 .759 .031
14 .330 .399 .344 .1"9 9472 .051
15 .293 .391 .224 ,179 054 m076
16 .263 .3DO .123 .010 .444 .106
17 .239 e370 .063 .114 .319 e126
13 .217 .e39 .032 .ea1 .206 .129
19 .199 .347 .014 .003 .124 .114
20 .132 ,5 .0069 032 .009 .O*

mI.kw of Invalid Estlsmats M& of go Tries

'Pt tods Data 9 PerIods Data 12 Periods Data

it 0 0

104
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TALE XVI

Ocapgrtz Ilmms and Btandard Deviations
mwi 100 MIssiles per Period Wre 11ud

4 Periods Date 9 Perlods Data 12 •r• Dt

t Mean Std-Dv Mian Btd-Dv ft= Std-O

I .999 .003 .97 AM0 .995 .00
2 .997 .003 .94 .003 .994 .004
3 .9 .003 .9" .004 .0,1 .005
4 .e92 .o .99 .005 .w .00
5. .996 .005 .967 ..006 qw9 e007
4 .970 .017 .990 .007 a.977 .000
7 .932 .059 .9&9 .007 .967 .OoW
a so" .154 .900 .010 .954 0010
9 .71& .274 .V17 .030 .039 .olo

10 ./7 .347 .862 0o1o .909 .009
11 .460 .3id5 .70 .140 .6n2 .009
12 .340 .344 .470 .196 .122 .015
13 .283 a3n .53 .234 .754 .A
14 .228 .342 .407 .260 .06 .050
is .190 0.3m .294 .260 =I e078
16 .1*" .3M .206 .240 .4= .107
17 .142 .290 .146 .210 .300 .127
10 .124 .272 .102 .179 .lW7 *131
1 .109 e254 .071 .148 0116 sliml

20 .095 .238 .049 .119 .045 .09%

4uibw of Invalid Eutimstus .st of SO frie

SPurldo Data 9 Purilms Data 12 Puriods Data

•0 0

101
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TA"E XVII

Donis fIns and Standard nvi atians
Nhn 30 M Is Iles per PerIod ftre Umed

4Partods Data Y Periods Usta 12 Periods Data

t Mean 9td-Ov C1an 8td-Ov Fhmn 8td-Dv

1 2 .V 00 .017 .911 .013
2 .99. - I K m .019 .09" .015
3 .9 .015 .9m .02 ,94 .0sl
4 .9"~ e017 6900O .025 .69"1 e021

5 .650 .00 .94 .001 .970 .0025&• ."5 ,0111 ,993 .92 ,961 ,03O
7 e906 AI% o947 0035 .*47 *035
8I .930 . |00 09M2 0 035 VM2 .040

9 .473 .262 .ow72 034 .s97 .045
10 .363 .441 .7*6- .@47 .M .004,
1. .423 9193 ,790 .044
12 .00 .542 .693 .040
13 .542 .000
14 .503 .220

14
17 P•m we negative In this arme
in 04 the Table, therefore,
19 calculations ae not considered
20

Nuwr of Invalid Estimate Out.of So Tries

4 PerIods Date s p2 Data

43o
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,. TADLE XVIII

Dnis Marns *• Standard Deviations
Wen 40 Mis&iles par Period Were Use

6 Periods Data 9 Periods Data 12 Periods Data

t Man td-Dv M•en Std-Ov "am 8td-Dy

1 .99V .007 .994 .011 .9l4 .173
2 .923 .006 .991 .013 .961 177
3 *999 1010 .9a6 M 0015 .934 o1e0
4 .994 .011 .964 .018 .9"0 .183
5 .974 012 .977 w021 .941 .16*
& o957 .013 .944 e024 ,930 .110
7 .923 .021 .949 .02& .914 .190
0 .975 .OM7 .920 .026 .e92 .192
9 .777 *142 .W78 .030 .640 .192

10 .e94 .337 .774 .074 .614 .1"9
AS .;42 .776 .392 .223 .17= .194
12 .22a .40"1 .442 *174
13 .=9 .104
14 .334 .177
5 .043 .276

14
17 eans are negative in this area
1s of the Tablv, thereFore,
19 calculations are not considered
20 __1

Number of Invalid Estimates Out of 50 Tries

64 Periods Data 9 Perlods Uta 12 PDriods Dta

~~1 31 1
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TABLE XIX

Doknis eans and Standard Deviations
Wen 70 Missiles per Period Were Used

6 Periods Data 9 Periods Data 12 Periods Data

t Mean Std-Dv Mean ltd-Dv "wan ltd-Dv

1 .996 0006 .905 .064 .993 .007
2 .994 .000 .983 .066 .990 .009
3 .".1 .009 .9°0 °066 .987 .012
4 .986 .010 .976 .070 .982 .014
5 .976 .011 .969 .073 .975 .018
4 .957 .013 .9w9 .074 .965 .022
7 .922 .. 27 .942 .075 .951 .026
a .951 .077 .915 .074 .930 9031
9 .704 .207 .667 .070 .901 .035

10 .396 .51 .701 .073 .856 .037
11 .622 .145 .790 .033
12 .319 .395 .6m9 .027
13 .533 .067
14 .288 .189
15

16
17 Meana re negative in this ara
is of the Table, therofore,
19 calculations are not considered
20

Nmbwr of Invalid Estimates Out of 50 Tries

SPeriods. Data T Period* Data 12 Periods Data

,2•5 0 0
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TABLE XX

Banin Means and Standard Deviations
When 80 Missiles per Period Were Used

6 Periods Data 9 Periods Data 12 Periods Data

t Mean Std-Dv Mean Btd-Dv Mean Btd-Dv

1- 096 .006 .996 .005 .991 .012
2 s994 .007 . "4 .006 .989 .014
3 "1 .006 .992 .007 .994 .016
4 .996 .009 .988 .009 .979 .019
5 .977 .009 .981 .011 .1 .022
& .961 .010 e971 .014 .9"0 .02=
7 .923 .025 .955 .016 .945 o028
S .864 .077 .927 .017 .923 .031
9 .730 .220 .890 .020 .892 .032

10 -.438 600 .795 .056 .946 e032
11 .I 4 .199 .784 .029
12 .306 ."46 .691 .024
13 .555 .045
14 .354 .110
13 .058 .237
14
17 Means are negative in this area
is of the Table, theruforep
19 calculations are not considered
20

Number of Invalid Estimates Out o4 50 Tries

6 Periods Data 9 Periods Data 12 Periods Data
.14 0 0
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TABLE XX!

Donis Means and Standard Deviations
Wien 90 Mlssiles per Period Were Used

6 Per•fiods Data 9 Periods Data 12 Periodt, Data

t Mean 8td-Dv Mean ltd-Dv Mfean Std-Dv

1 .997 .005 .993. .010 .94 .003
3 .995 .006 .91 .012 .992 .0043 i.992 .0O8 .988 .014 .988 .006

S4 .98S .009 .983 .016 .9S4 .007

5 .970 .009 .977 .019 .976 .009
S.96 .010 .91 .021 .930 .0127 90 .029 .950) *023 e9'52 .015

a .829 .102 .q25 .023 .930 .019
S9 .6lS .317 .862 o2 ~o *2

!10 .096 .929 .810 *040 .83S5 .022

11 .683 .123 .7S9 .022
12 *448 .349 .693 .021
13 .551 .032
14 .340 0080
15 .029 .182
16
17 Mam are negative in this area
19 of the Tableg therefore,"
19 calculations are not considered
20

Nuaber o4 Invalid Estimates Out of 50 TriesI Periods Dat& 9 Periods Data 12 PSlods Data

Dt0 0

O10
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TATr!E XXII

Banis Means and Standard Deviatiuns
When 100 Missiles per Period Were Ursed

6 Periods Data 9 Periods Zata 12 Pe-iods Data

t Mean Std-Dv Mean Std-Dv Mean Std-Dv

1 .996 .009 .995 .005 .993 .007
2 .994 .010 .993 .007 990 .008
3 .991 .012 .990 .009 .996 .010
4 .907 .013 .096 .011 .901 ý012
5 .978 .014 .980 .013 .973 .015
6 .960 .014 .969 .016 .963 .017
7 .922 .031 .953 .018 .947 e020
8 .8=3 .109 .927 .018 .926 .02=
9 .619 .349 .882 .019 .895 .024

10 0895 1.072 .904 .047 .851 .025
11 .663 .1h3 .7-39 .022
12 .388 .530 .696 .020
13 .563 .035
14 .369 .081
15 .004 .170

17 Mean. m-= kwgative In this area
18 f4 the Table, there-ore,
19 calculations are not considered
20

Number of Inva1li Estimates Out o4 50 Tries

& Per6ods Data 9 Pwrisds Data 12 Periods Data
4 0 0

I I I
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TABLE XXIII

Duane Mcans and Standard Deviations
When 50 Missiles per Period Vh;re Used

6 Periods Data 9 Pc-riods Data 12 Periods Data

t Mean Std-Dv Moan Std-Dv f!an Std-Dv

1 .998 .002 .999 .001 .999 .001
2 .996 .003 .997 .003 .997 .C02
3 .993 .005 .993 .005 .993 .005
4 .987 .003 .9c5 .007 .934 .008
5 .975 .016 .973 .010 .971 .010
6 .953 .044 .954 .015 .9-0 .013
7 .911 .122 .926 .02- .922 .016
e .e61 .201 .C:3 .046 .C4 .022
9 .813 .249 .037 .0 .835 .035

10 .767 .236 .774 .125 .776 .057
11 .724 .322 .703 .173 .707 .039

12 .665 .=5 .631 .223 .732 .124
13 .653 .379 .a3 .267 .5:5 .157
14 .629 .393 .004 .291 .431 .1e2
15 .608 .400 .434 .304 .413 .197
16 .591 .405 .411 .310 .3=3 .205
17 .573 .403 .374 .312 .300 .208
18 .560 .410 .343 .311 .2Z3 .206
19 .546 .413 .315 .301 .217 .201
20 .534 .416 .291 .30Z6 105 .194

Kunbcr of Invalid Estimatcs Out of 50 Tries

6 Periods Data 9 Pariadz Data 12 Poriods Data
9 P 0 0

112



TABLE XXIV

Duane Means and Standard Dowlations
When 60 Missiles per Period Were Used

6 Periods Data 9 Periods Data 12 Periods Data

t Mean Std-Dv Mean Std-Ov Mewn Std-Dv

1 .998 .002 .999 .001 .999 .001
2 .997 .003 .997 .003 .997 .002
3 .993 .004 .993 .004 09'2 .004
4 .987 .007 .984 9007 .983 .007
5 .973 .016 .969 .009 .96" O?
6 .942 .054 .945 .014 .941 .0'-2
7 .881 .156 .909 .028 .9040o , "C.6
9 .810 .253 .958 .055 .89 am
9 .749 .306 .791 .097 .799 .041

10 .697 .350 .712 .151 .729 ,*04
11 .656 .37"3 .627 .204 . 461 .of3
12 .623 .389 o545 .246 .562 ., 24
13 .594 .402 .473 .271 e477 .L52
14 .570 .412 .413 .283 .396 .174
15 .549 .419 .361 .207 .325 .1w9
16 .531 .424 .318 .2W9 .264 0194
17 .516 .427 .281 .206 .214 e194
.8 .!32 .430 .251 o282 .175 .191
19 .490 .432 .224 .270 .145 .185
20 .479 .434 .202 .277 .119 .179

Number of Invaid Estimates Out of 50 Tries

6 Periods Data 9 Periods Data 12 Periods Data

2 0t0

113
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TITA"I XXV

Duanm OftNN and Standard DIvlatiami
hen 70 Missiles per Per-iad Um, -ed

Period% Data 9 Periods Data 12 Periods Date

t Mean Std-Ov Men Std-D1v Mema Std-Dv

1 .999 .004 .999 .002 .999 .001
2 .996 .005 .994 .004 .97 .003
3 .992 .006 .991 .006 .991 .006
4 .9%4 .007 .980 .00w .979. .009
5 .966 .016 .963 .010 .9w0 .012
4 .921 .046 .934 .016 .931 .014
7 .= .199 .097 .030 .991 .017
U .740 .316 .04• .056 .8= .025
9 .681 .354 .776 .093 .772 .042

10 .635 .371 .f97 .140 .694 .065
11 .595 .304 .411 .189 .600 .093
12 .560 .39% .527 '.232 .519 .123
13 .529 .405 .451 .264 .431 .149
14 .504 .412 .367 .204 .351 .014
15 .483 .415 o336 .294 .282 .178
16 .466 .417 o295 .297 .226 .190
17 .450 o418 .263- .297 .191 .. 175
10 .437 .418 .237 .:*93 .147 .166"
19 .424 .418 .214 .299 .120 .15
20 .413 .417 .196 .294 .099 .143

imrw of9 Invalid Estimatew Out of 50 Tries

& Periods Data 9 Periods Data 12 Periods Dat

0 0 0

114
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TABLE XXV!

Duane Means and Gtandard Deviations
When 90 Missiles per Period Wtr' Used

Periods Data 9 Periods Data 12 Periods Data

t Mean Std-Dv Mean Btd-Dv Mean Std-Dv

1 .998 .002 .999 .001 .999 .001
2 .995 .004 .996 .003 .996 .003
3 .949 .005 .989 .006 .9m0 .003
4 .990 .008 .967 .008 .975 .009
5 .965 .015 .956 .010 .953 .011
4 .941 .035 .926 .015 .920 .013
7 .906 .077 .8am .028 .873 .00k
9 .859 .139 .832 .052 .818 .022
9 .907 .194 .766 .086 .750 .036•
10 .756 .237 .692 .127 .671 .056
11 .706 .274 .613 .167 .5s85 .079
12 .&W0 .305 .536 .201 .497 .102
13 .619 .328 .464 .224 .412 .121
14 .583 .346 .400 .238 .333 .134
15 .551 .358 .346 .243 .265 .140
16 .524 .367 e300 .242 a207 .138
17 .5.01 .373 .261 .238 .161 .132
19 .480 .376 .228 .232 .125 .123
19 .461 .379 .200 .225 .097 .113
20 .444 .380 .176 .217 .076 .102

Mme of Invalid Estimates Out of 50 Tries

Pwriods Data 9 Periods Data 12 Periods Data

0 0 0

ii.- . -U S ,! ,i i. ... .. .
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TA•LE XXVII

Duane Maens and Standard Deviations
When 90 Missiles per Period Were Used

, Priod, Data 9 Periods Data 12 Periods Data

t mean Skd-Dv Mean Std-Dv Man ftd-Dv

1 .99" .002 .999 .001 .999 .001
2 .995 .004 .996 .004 .994 .003
3 .989 .006 ,996 .007 .9098 .007
4 .977 .006 .974 t.010 .973 .011
5 .956 .017 .951 .013 .948 .015
6 .921 .045 .918 .014 .912 .016
7 .667 .101 .872 .024 .863 .019
8 .795 .178 .113 .041 .799 .021
9 .718 .247 .741 .067 .723 .030

10 ."4a .292 .440 .100 .4&= .047
11 ,587 .321 .72 .134 .542 .069
12 ,534 .339 .406 61"4 o447 .092
13 .492 .350 64"- .190 .35 .110s
14 .454 .354 .337 .202 .276 .120
15 .425 ,335 .279 .204 e212 .122
16 .398 .354 .231 .201 .140 .117
17 .375 .352 .193 .193 .120 .107
t1 .353 ,350 .142 .163 .009 .095
19 .334 .348 ,138 .172 .067 .062
2 31 20 .317 1117 ,160 .050 e070

Number f Invalid ERtisates Out of 50 Tries

S4 Periods Data * Perlode Data 12 Periods Data

0 0o+ 0

116
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TAKE XXVIXI

Duane Memani and Standard Deviations
When 100 Missiles per Period Were Used

"6 Period* Data 9 Periods Data 12 Periods Data

t Mean Gtd-Dv Mean Std-Dv Mean Std-Dv

1 .998 .004 .99 .001 ,9 001
2 .994 .005 .995 e004 .996 .003
3 .987 .007 .907 .007 .987 .007
4 .975 .009 .971 .011 .970 .011
5 .952 .019 .946 .013 .042 .015
6 .913 .051 .908 e017 .902 .017
7 .8=2 A128 .856 e031 .94• .018
U .782 .191 .789 .059 .779 .025
9 .707 .244 a706 .090 .495 .041

10 .635 e293 .616 e142 .601 .064
11 .572 ,327 *526 0179 ,303 6099
12 .519 .351 ,411 .204 .406 a11t
13 .477 .365 .367 .221 .321 .125
14 .443 .373 .306 .227 .24& .131
15 .416 .376 .256 .226 .Is& .129
16 .393 .376 ,216 .220 .140 w121
17 .375 .375 ,194 .210 .105 .109
Is .358 .372 .159 .199 .079 .097
19 .343 .369 .138 .109 0060 .00
20 .330 .366 .121 .176 .04 .*074

Nuaber of Invalid Estimates Out of 50 Triesf Periods Data 9 Periods Data 12 Periods Data

0 0 0

117
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This thesis presents the results of an extensive
literature search Into reliability growth and the subsequent
use of three reliability growth models to predict dormant
reliability. A brief review of reliability theory is
followed by aSurvey of reliability growth modelat which
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includes the detailed developments of and specific examples
for five popular models. The nature of dormant reliability
is then discussed as a prelude to a Monte Carlo analysis
using the Duane, Gompertz, and Bonis reliability growth
models to predict dormant reliability.•>
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